On Various Cyclic Contractions In Dislocated Quasi B-Metric Spaces

${ }^{1}$ Krati Shukla
${ }^{1}$ Research Scholar
${ }^{1}$ Department of Mathematics,
${ }^{1}$ Institute for Excellence in Higher Education, Bhopal, M.P.,India

Abstract

In this paper we prove some new fixed point results in dislocated quasi b-metric spaces. We introduce dqb-cyclicChatterjea type contraction, dqb-cyclic-Ciric type contraction and dqb-cyclic-Reich type contraction. We also provide proofs for fixed point results using aforesaid contraction conditions.

2010 MSC: Primary: 47H10, 46J10; Secondary: 54H25, 46J15;
IndexTerms-Cyclic Contraction, Fixed Point, Dislocated Quasi B-Metric Space.

I. Introduction

Fixed Point Theory has witnessed enormous amount of research in past few decades. As Banach[3], in 1922, laid the foundations of contraction principle and devised the mechanism for ensuring and finding a fixed point to be existent provided the self-map be continuous, he opened up a broad opportunity to generalizations and applications of the contraction principle. The principle may be stated as follows:
"If X is a complete metric space, then every contraction mapping from X to itself has a unique fixed point."
In 1930, Wilson[10] introduced the concept of quasi - metric, which is merely suppressing one of the abiding axioms for being a complete metric i.e. $d(x, y)=d(y, x)$. Hitzler \& Seda[6] introduced the concept of dislocatedmetricspace and generalized the Banach's contraction principle. Ahmed, Hassan \& Zeyada[12] introduced the concept of dislocatedquasimetricspace, which is an obvious generalization of dislocatedmetricspace and Banach's contraction principle. In 1989, Bakhtin[2], introduced the concept of b-metricspace and generalized Banach's contraction principle for $b-$ metricspace. Chakkrid and Cholatis[8] introduced the concept of dislocatedquasib - metricspace.
In this paper we establish some new outcomes using Chatterjea contraction principle[4], Ciric contraction principle[5] and Rich contraction principle[9].

II. PRELIMINARIES

Definition 2.1[1]. Let X be a non empty set, let $d: X \times X \rightarrow[0, \infty)$ and let $k \in \mathbb{R}$.Then (X, d) is said to be b - metricspaceif the following conditions are satisfied:
(i) $d(x, y)=0$ if and only if $x=y, \forall x, y \in X$.
(ii) $d(x, y)=d(y, x), \forall x, y \in X$.
(iii) There exist a real number $k \geq 1$ such that $d(x, y) \leq k[d(x, z)+d(z, y)], \forall x, y \in X$.

Definition 2.2[1]. Let X be a non empty set and let $d: X \times X \rightarrow \mathbb{R}$, then (X, d) is known as dislocated metric if the following conditions are met and $\forall x, y, z \in X$.
(i) $d(x, y) \geq 0, \forall x, y \in X$.
(ii) $d(x, y)=d(y, x), \forall x, y \in X$.
(iii) $d(x, y)=d(y, x) \Longrightarrow x=y, \forall x, y \in X$.
(iv) $d(x, y) \leq d(x, z)+d(z, y), \forall x, y \in X$.

If d satisfies (i),(iii) and (iv) then d is called dislocatedquasimetricon X and the pair (X, d)is calleddislocatedquasimetricspace.
Definition 2.3[1]. Let X be a non-empty set and let the mapping $d: X \times X \rightarrow[0, \infty)$. Let a constant $k \geq 1$. Iffollowing conditions are satisfied:
(i) $d(x, y)=d(y, x)=0, \forall x, y \in X$.
(ii) $d(x, y) \leq k[d(x, z)+d(z, y)], \forall x, y \in X$.

Then the pair (X, d) is called dislocatedquasib - metricspace.
Definition 2.4[1]. Let (X, d) be adqb - metricspace. A sequence $<x_{n}>$ in X is called to be dqb-converges to $x \in X$ if

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0=\lim _{n \rightarrow \infty} d\left(x, x_{n}\right)
$$

In this case x is called dqb-limitof $\left\langle x_{n}\right\rangle$ and is written as $x_{n} \rightarrow x$.
Definition 2.5[8]. Let (X, d) be a dqb-metric space. A sequence $<x_{n}>$ in X is called as dqb-Cauchy sequence if

$$
\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0=\lim _{n \rightarrow \infty} d\left(x_{m}, x_{n}\right)
$$

Proposition 2.6[8]. If (X, d) is a dqb-metricspace then a function $f: X \rightarrow X$ is continuous if and only if $x_{n} \rightarrow x \Rightarrow f x_{n} \rightarrow$ $f x$.

Definition 2.7 Let A and B be nonempty closed subsets of ametricspace (X, d) and $S: A \cup B \rightarrow A \cup B . S$ is called a cyclic map iff $S(A) \subseteq B a n d S(B) \subseteq A$.
Definition 2.8[7].A cyclic map $S: A \cup B \rightarrow A \cup B$ is said to be a cyclic contraction if there exists $\alpha \in[0,1)$ such that $d(S x, S y) \leq \alpha d(x, y)$
$\forall x \in$ Aandy $\in B$.
Definition2.9 Let A and B be non empty closed subsets of a completedqb-metricspace (X, d). A cyclic mapping $S: A \cup B \rightarrow$ $A \cup B$ is called a dqb-cyclicChatterjeatypecontractionif there exist some $r \in\left(0, \frac{1}{2}\right)$ such that

$$
d(S x, S y) \leq r[d(x, S y)+d(y, S x)]
$$

$\forall \mathrm{x} \in \mathrm{A}, \mathrm{y} \in \mathrm{B}$ with $k \geq 1$ and $k r \leq 1$.
Definition2.10 Let A and B be non empty closed subsets of a completedqb-metricspace (X, d). A cyclic mapping $S: A \cup$ $B \rightarrow A \cup B$ is called a dqb-cyclicCirictypecontractionif there exist some $r \in(0,1)$ such that

$$
d(S x, S y) \leq r \max [d(x, y), d(S x, x), d(S y, y)]
$$

$\forall \mathrm{x} \in \mathrm{A}, \mathrm{y} \in \mathrm{B}$ with $k \geq 1$ and $k r \leq 1$.
Definition2.11 Let A and B be non empty closed subsets of a completedqb-metricspace (X, d). A cyclic mapping $S: A \cup$ $B \rightarrow A \cup B$ is called a $d q b-$ cyclicReichtypecontractionif there exist some $a, b \& c w h e r e(a+b+c)<1$, such that

$$
d(S x, S y) \leq a \cdot d(x, S x)+b \cdot d(y, S y)+c \cdot d(x, y)
$$

$\forall x \in A, y \in B$ with $k \geq 1$ and $k(a+b+c) \leq 1$.

III. MAIN RESULTS

Now, we prove cyclic - Chatterjea type Contraction in dislocated quasi b - metric space.
Theorem 3.1 Let A and B be nonempty closed subsets of a complete dislocated quasi-b-metric space (X, d). Let cyclic mapping S : $A \cup B \rightarrow A \cup B$ satisfies the condition of a dqb-cyclic - Chatterjea type Contraction. Then S has a unique fixed point in $\mathrm{A} \cap \mathrm{B}$.

Proof: Let $x \in A($ fix $)$.Then, by the condition of the theorem,

$$
\begin{align*}
& d\left(S^{2} x, S x\right)=d(S(S x), S x) \\
& d\left(S^{2} x, S x\right) \leq r\left[d(S x, S x)+d\left(x, S^{2} x\right)\right] \\
& d\left(S^{2} x, S x\right) \leq r \alpha \tag{1}\\
& \quad \text { And } \\
& d\left(S x, S^{2} x\right)=d(S x, S(S x)) \\
& d\left(S x, S^{2} x\right) \leq r\left[d\left(x, S^{2} x\right)+d(S x, S x)\right] \\
& d\left(S x, S^{2} x\right) \leq r\left[d(S x, S x)+d\left(x, S^{2} x\right)\right] \\
& d\left(S x, S^{2} x\right) \leq r \alpha \tag{2}
\end{align*}
$$

Where $\alpha=\left(d(S x, S x)+d\left(x, S^{2} x\right)\right)$
Now, from (1) and (2), we have, $d\left(S^{3} x, S^{2} x\right) \leq r^{2} \alpha$, and $d\left(S^{2} x, S^{3} x\right) \leq r^{2} \alpha$.
And in general $\forall n \in \mathbb{N}$, we get,

$$
\begin{aligned}
& \left(S^{n+1} x, S^{n} x\right) \leq r^{n} \alpha \\
& \quad \text { And } \\
& \left(S^{n} x, S^{n+1} x\right) \leq r^{n} \alpha
\end{aligned}
$$

Let $n, m \in \mathbb{N}$ with $m>n$, by using the triangular inequality, we have

$$
\begin{aligned}
d\left(S^{m} x, S^{n} x\right) & \leq k^{m-n} d\left(S^{m} x, S^{m-1} x\right)+k^{m-n-1} d\left(S^{m-1} x, S^{m-2} x\right)+\cdots+k\left(S^{n+1} x, S^{n} x\right) \\
& =\left(k^{m-n} r^{m-1}+k^{m-n-1} r^{m-2}++k^{m-n-2} r^{m-3}+\cdots+k^{2} r^{n+1}+k r^{n}\right) \alpha \\
& =\left((k r)^{m-n} r^{n-1}+(k r)^{m-n-1} r^{n-1}++(k r)^{m-n-2} r^{n-1}+\cdots+(k r)^{2} r^{n-1}+(k r) r^{n-1}\right) \alpha \\
& \leq\left(r^{n-1}+r^{n-1}+r^{n-1}+\cdots+r^{n-1}+r^{n-1}\right) \alpha \\
& =\left(r^{n-1}\right)(m-n-1) \alpha \\
d\left(S^{m} x, S^{n} x\right) & \leq\left(r^{n-1}\right) \beta \alpha
\end{aligned}
$$

With $\beta>0$, as $n \rightarrow \infty$, we get $d\left(S^{m} x, S^{n} x\right) \rightarrow 0$.
In a similar way, let $m, n \in \mathbb{N}$, with $m>n$, by using triangular inequality, we have

$$
d\left(S^{n} x, S^{m} x\right) \leq\left(r^{n-1}\right) \beta \alpha
$$

With $\beta>0$, as $n \rightarrow \infty$, we get $d\left(S^{m} x, S^{n} x\right) \rightarrow 0$. Therefore sequence $<S^{n} x>$ is a Cauchy sequence that converges to some $u \in X$. As (X, d) is complete, sequence $<S^{n} x>$ is in A and sequence $\left.<S^{2 n-1} x\right\rangle$ is in B in a way that we have both the sequences tend to same limit $u \in X$.

Since A and B are closed subsets of X and, $u \in A \cap B$, therefore $A \cap B \neq \emptyset$.
Now we will prove the existence of fixed point i.e. $S u=u$.
By the condition of the theorem we have

$$
\begin{gathered}
d\left(S^{n} x, S u\right)=d\left(S\left(S^{n-1} x\right), S u\right) \\
d\left(S^{n} x, S u\right) \leq r\left[d\left(S^{n-1} x, S u\right)+d\left(u, S^{n} x\right)\right]
\end{gathered}
$$

Now as $n \rightarrow \infty$, we get

$$
\begin{aligned}
& d(u, S u) \leq r[d(u, S u)+d(u, u)] \\
& d(u, S u) \leq r d(u, S u)
\end{aligned}
$$

Since $r \geq 1$, this inequality is only possible if $d(u, S u)=0$.
Similarly from the condition of the theorem, we have

$$
\begin{aligned}
d\left(S u, S^{n} x\right) & =d\left(S u, S\left(S^{n-1} x\right)\right) \\
d\left(S u, S^{n} x\right) & \leq r\left[d\left(u, S^{n} x\right)+d\left(S^{n-1} x, S u\right)\right]
\end{aligned}
$$

Now as $n \rightarrow \infty$, we get
From triangular inequality,

$$
d(S u, u) \leq r[d(S u, u)+d(u, S u)]
$$

Which gives
$d(S u, u) \leq r d(S u, S u)$

$$
d(S u, u)=0
$$

Hence $d(u, S u)=d(S u, u)=0$ and thus, $S u=u$. This implies that u is a fixed point of S.
Now we prove the uniqueness of the fixed point. Let $v \in X$ be another fixed point of S, such that $S v=v$. Then by the condition of the theorem we lead to

$$
\begin{aligned}
& d(u, v)=d(S u, S v) \\
& d(u, v) \leq r[d(u, S v)+d(v, S u)] \\
& d(u, v) \leq r[d(u, v)+d(v, u)] \\
& d(u, v)=r d(u, u) \\
& d(u, v)=0 .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
d(v, u) & =d(S v, S u) \\
d(v, u) & \leq r[d(v, S u)+d(u, S v)] \\
d(v, u) & \leq r[d(v, u)+d(u, v)] \\
d(v, u) & =r d(v, v) \\
d(v, u) & =0 .
\end{aligned}
$$

$d(u, v)=d(v, u)=0$. This implies that $u=v$ and u is the unique fixed point of S.
Now, we provide alternate proof for cyclic - Ciric type Contraction in dislocated quasi b-metric space. Wu et.al.[8] in 2016 proved cyclic - Ciric type Contraction in dislocated quasi b - metric space.
Theorem 3.2 Let A and B be nonempty closed subsets of a complete dislocated quasi - b-metric space (X, d). Let cyclic mapping $S: A \cup B \rightarrow A \cup B$ satisfies the condition of a dqb - cyclic - Ciric type Contraction. Then S has a unique fixed point in $\mathrm{A} \cap \mathrm{B}$.
Proof: Let $x \in A(f i x)$.Then, by the condition of the theorem,

$$
\begin{align*}
& d\left(S^{2} x, S x\right)=d(S(S x), S x) \\
& d\left(S^{2} x, S x\right) \leq r \max \left[d(S x, x)+d\left(S^{2} x, S x\right)+d(S x, x)\right] \\
& \text { Let } \alpha=\max \left[d\left(S^{2} x, S x\right)+d(S x, x)\right] \\
& d\left(S^{2} x, S x\right) \leq r \alpha \tag{3}\\
& d\left(S x, S^{2} x\right)=d(S x, S(S x)) \\
& d\left(S x, S^{2} x\right) \leq r \max \left[d(x, S x)+d(S x, x)+d\left(S^{2} x, S x\right)\right] \\
& \text { Let } \beta=\max \left[d(x, S x)+d(S x, x)+d\left(S^{2} x, S x\right)\right] \\
& d\left(S x, S^{2} x\right) \leq r \beta \tag{4}
\end{align*}
$$

And

Let $\zeta=\max [\alpha, \beta]$
Now, from (3) and (4), we have, $d\left(S^{3} x, S^{2} x\right) \leq r^{2} \zeta$ and $d\left(S^{2} x, S^{3} x\right) \leq r^{2} \zeta$.
And more generally $\forall n \in \mathbb{N}$, we get,

$$
\left(S^{n+1} x, S^{n} x\right) \leq r^{n} \zeta
$$

And

$$
\left(S^{n} x, S^{n+1} x\right) \leq r^{n} \zeta
$$

Let $n, m \in \mathbb{N}$ with $m>n$, by using the triangular inequality, we have

$$
\begin{aligned}
& d\left(S^{m} x, S^{n} x\right) \leq k^{m-n} d\left(S^{m} x, S^{m-1} x\right)+k^{m-n-1} d\left(S^{m-1} x, S^{m-2} x\right)+\cdots+k\left(S^{n+1} x, S^{n} x\right) \\
& \quad=\left(k^{m-n} r^{m-1}+k^{m-n-1} r^{m-2}++k^{m-n-2} r^{m-3}+\cdots+k^{2} r^{n+1}+k r^{n}\right) \zeta \\
&=\left((k r)^{m-n} r^{n-1}+(k r)^{m-n-1} r^{n-1}++(k r)^{m-n-2} r^{n-1}+\cdots+(k r)^{2} r^{n-1}+(k r) r^{n-1}\right) \zeta \\
& \leq\left(r^{n-1}+r^{n-1}+r^{n-1}+\cdots+r^{n-1}+r^{n-1}\right) \zeta \\
&=\left(r^{n-1}\right)(m-n-1) \zeta \\
& d\left(S^{m} x, S^{n} x\right) \leq\left(r^{n-1}\right) \lambda \zeta
\end{aligned}
$$

With $\lambda>0$, as $n \rightarrow \infty$, we get $d\left(S^{m} x, S^{n} x\right) \rightarrow 0$.
In a similar way, let $m, n \in \mathbb{N}$, with $m>n$, by using triangular inequality, we have

$$
d\left(S^{n} x, S^{m} x\right) \leq\left(r^{n-1}\right) \lambda \zeta
$$

With $\lambda>0$, as $n \rightarrow \infty$, we get $d\left(S^{m} x, S^{n} x\right) \rightarrow 0$. Therefore sequence $<S^{n} x>$ is a Cauchy sequence that converges to some $u \in X$. As (X, d) is complete, sequence $\left\langle S^{n} x>\right.$ is in A and sequence $\left.<S^{2 n-1} x\right\rangle$ is in B in a way that we have both the sequences tend to same limit $u \in X$.

Since A and B are closed subsets of X and, $u \in A \cap B$, therefore $A \cap B \neq \emptyset$.
Now we will prove the existence of fixed point i.e. $S u=u$.
By the condition of the theorem we have

$$
\begin{aligned}
& d\left(S^{n} x, S u\right)=d\left(S\left(S^{n-1} x\right), S u\right) \\
& d\left(S^{n} x, S u\right) \leq r \max \left[d\left(S^{n-1} x, u\right)+d\left(S^{n} x, S^{n-1} x\right)+d(S u, u)\right]
\end{aligned}
$$

Now as $n \rightarrow \infty$, we get

$$
\begin{array}{r}
d(u, S u) \leq r \max [d(u, S u)+d(u, u)+d(S u, S u)] \\
d(u, S u) \leq r d(u, S u)
\end{array}
$$

Since $r \geq 1$, this inequality is only possible if $d(u, S u)=0$.
Similarly from the condition of the theorem, we have

$$
\begin{aligned}
d\left(S u, S^{n} x\right)= & d\left(S u, S\left(S^{n-1} x\right)\right) \\
& d\left(S u, S^{n} x\right) \leq r \max \left[d\left(u, S^{n-1} x\right)+d(S u, u)+d\left(S^{n} x, S^{n-1} x\right)\right]
\end{aligned}
$$

Now as $n \rightarrow \infty$, we get
Which gives

$$
\begin{aligned}
& d(S u, u) \leq r \max [d(u, u)+d(S u, S u)+d(u, u)] \\
& d(S u, u)=0 .
\end{aligned}
$$

Hence $d(u, S u)=d(S u, u)=0$ and thus, $S u=u$. This implies that u is a fixed point of S.
Now we prove the uniqueness of the fixed point. Let $v \in X$ be another fixed point of S, such that $S v=v$. Then by the condition of the theorem we lead to

$$
\begin{aligned}
& d(u, v)=d(S u, S v) \\
& d(u, v) \leq r \max [d(u, v) \leq d(u, u)+d(v, v)] \\
& d(u, v) \leq r[d(u, v)] \\
& d(u, v)=0 . \\
& d(v, u)=d(S v, S u) \\
& d(v, u) \leq r \max [d(v, u)+d(S v, v)+d(S u, u)] \\
& d(v, u) \leq r \max [d(v, u)+d(v, v)+d(u, u)] \\
& d(v, u)=0 .
\end{aligned}
$$

Similarly,
$d(u, v)=d(v, u)=0$. This implies that $u=v$ and u is the unique fixed point of S.
Now, we prove cyclic - Reich type Contraction in dislocated quasi b-metric space.
Theorem 3.3 Let A and B be nonempty closed subsets of a complete dislocated quasi - b-metric space (X, d). Let cyclic mapping $S: A \cup B \rightarrow A \cup B$ satisfies the condition of a dqb-cyclic - Reich type Contraction. Then S has a unique fixed point in $\mathrm{A} \cap \mathrm{B}$.
Proof: Let x be some arbitrary in X. We define a sequence $<x_{n}>$ in X such that $x_{1}=S\left(x_{0}\right), x_{2}=S\left(x_{1}\right) \ldots$ in general $S\left(x_{2 n}\right)=$ $x_{2 n+1}, S\left(x_{2 n+1}\right)=x_{2 n+2}$ for $n=0,1,2,3 \ldots$ Then, by the condition of the theorem,

$$
\begin{aligned}
d\left(x_{1}, x_{2}\right)=d\left(S x_{0}, S x_{1}\right) & \\
d\left(x_{1}, x_{2}\right) & \leq a . d\left(x_{0}, S x_{0}\right)+b . d\left(x_{1}, S x_{1}\right)+c . d\left(x_{0}, x_{1}\right) \\
d\left(x_{1}, x_{2}\right) & \leq a . d\left(x_{0}, x_{1}\right)+b . d\left(x_{1}, x_{2}\right)+c . d\left(x_{0}, x_{1}\right) \\
d\left(x_{1}, x_{2}\right) & \leq(a+c) d\left(x_{0}, x_{1}\right)+b . d\left(x_{1}, x_{2}\right) \\
d\left(x_{1}, x_{2}\right)-b . d\left(x_{1}, x_{2}\right) & \leq(a+c) d\left(x_{0}, x_{1}\right) \\
(1-b) d\left(x_{1}, x_{2}\right) & \leq(a+c) d\left(x_{0}, x_{1}\right) \\
d\left(x_{1}, x_{2}\right) & \leq\left(\frac{a+c}{1-b}\right) d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

In a similar way we have, $d\left(x_{2}, x_{3}\right) \leq\left(\frac{a+c}{1-b}\right) d\left(x_{1}, x_{2}\right)$
or, $\quad d\left(x_{2}, x_{3}\right) \leq\left(\frac{a+c}{1-b}\right)^{2} d\left(x_{0}, x_{1}\right)$
And continuing like this we have, $d\left(x_{n}, x_{n+1}\right) \leq\left(\frac{a+c}{1-b}\right)^{n} d\left(x_{0}, x_{1}\right)$

$$
d\left(x_{n+1}, x_{n+2}\right) \leq\left(\frac{a+c}{1-b}\right)^{n+1} d\left(x_{0}, x_{1}\right)
$$

Now as $n \rightarrow \infty,\left(\frac{a+c}{1-b}\right)^{n+1} d\left(x_{0}, x_{1}\right) \rightarrow 0$, This, therefore, suggests that the sequence $\left\{x_{n}\right\}$ is a Cauchy Sequence in X.Thus, there is a point $u \in X$ such that $x_{n} \rightarrow u$. Therefore we have, $S u=u$. Now we prove the uniqueness of the fixed point. Let $v \in X$ be another fixed point of S, such that $S v=v$. Then by the condition of the theorem we have

$$
\begin{aligned}
& d(u, v)=d(S u, S v) \\
& d(u, v) \leq a \cdot d(u, S u)+b \cdot d(v, S v)+c \cdot d(u, v) \\
& d(u, v) \leq a \cdot d(u, u)+b \cdot d(v, v)+c \cdot d(u, v) \\
& d(u, v) \leq c \cdot d(u, v) \\
& d(u, v)=0 .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& d(v, u)=d(S v, S u) \\
& \quad d(v, u) \leq a \cdot d(v, S v)+b \cdot d(u, S u)+c \cdot d(v, u)
\end{aligned}
$$

$$
\begin{aligned}
& d(v, u) \leq a \cdot d(v, v)+b \cdot d(u, u)+c \cdot d(v, u) \\
& d(v, u) \leq c \cdot d(v, u) \\
& d(v, u)=0 .
\end{aligned}
$$

$d(u, v)=d(v, u)=0$.This implies that $u=v$ and u is the unique fixed point of S.

IV. CONCLUSION

We presented some new results and provided alternate proof for fixed point result in dislocated quasi b-metric space using dqbcyclic Ciric type contraction.

V. ACKNOWLEDGMENT

The author sincerely acknowledges help and guidance of Dr. SS Pagey, Professor (Retd.), institute for excellence in higher education, Bhopal..

References

[1] Aage, C.T., Golhare, P.G., 2016, On fixed point theorems in dislocated quasi b-metric spaces, International Journal of Advances in Mathematics, Vol. 2016, No. 1, pp. 55-70.
[2] Bakhtin I.A., The contraction mapping principle in almost metric spaces. 30. In Functional Analysis. Ul'yanovsk Gos. Ped. Inst., Ul'yanovsk; 1989:26-37.
[3] Banach, S., Sur les opérations dans les ensembles abstraits et leur application aux 'quations intègrales,Fund. Math., Vol. 3 (1922), pp. 133-181.
[4] Chatterjea, S.K., Fixed point theorems, C.R. Acad. Bulgare Sci., 25 (1972), pp.727-730.
[5] Ciric, Lj. B., A generalization of Banach's contraction principle, Proceedings of the American Mathematical Society, Vol 45, No. 2(Aug. 1974).
[6] Hitzler, P., Seda, A. K, Dislocated Topologies, J. Electr.Engin., 51(12/s) (2000), pp. 3-7.
[7] Kirk, W.A., Srinivasan, P.S., Veeramani, P., Fixed points for mapping satisfying cyclic contractive conditions. Fixed Point Theory 4, pp.79-89 (2003)
[8] Klin-eam, Chakkrid, Suanoom, Cholatis, Dislocated quasi-b-metric spaces and fixed point theorems for cyclic contractions, Fixed Point Theory and Applications, (2015).
[9] Reich, S., Some remarks concerning contraction mappings, Canad. Math. Bull., 14 (1971), pp. 121-124.
[10] Wilson, W. A., American Journal of Mathematics, Vol. 53, No. 3 (Jul., 1931), pp. 675-684.
[11] Wu, H., Wu, D., Some Fixed Point Theorems in Complete Dislocated Quasi-b-metric Space, Journal of Mathematics Research, Vol. 8, No. 4, pp. 68-73, August 2016.
[12] Zeyada, F. M., Hassan, G. H., Ahmed, M. A., A Generalization of a fixed point theorem due to Hitzler and Seda in dislocated quasi-metric spaces, The Arabian Journal for Science and engeering, Vol.31(2005), pp 111-114.

